Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wei Chen, ${ }^{\text {a,b }}$ Qiu-Xiang Yin, ${ }^{\text {a }}$ Chuang Xie, ${ }^{\text {a }}$ Jing-Kang Wang ${ }^{\text {a* }}$ and Hong Li ${ }^{\text {a }}$

${ }^{\text {a }}$ The State Research Centre of Industrialization for Crystallization Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ Tianjin Economic and Technological Development Area, Tianjin, People's Republic of China

Correspondence e-mail: srcict@tju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.052$
$w R$ factor $=0.132$
Data-to-parameter ratio $=18.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,8-Bis(phenyIsulfanyl)octane

The title compound, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~S}_{2}$, crystallizes with two halfmolecules in the asymmetric unit. In each independent molecule, there is a centre of inversion at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. Each molecule, excluding H atoms, is roughly planar, and adopts an all-anti conformation. The dihedral angles between the phenyl ring and backbone chain are 20.1 (2) and 20.3 (2).

Comment

Since flexible ligands can modify their conformations as a result of changes in the coordination environment (Goodgame et al., 1999), it is interesting to compare the conformations of free ligands with those adopted in their complexes. In the present paper, we report the crystal structure of the title compound, (I), a flexible dithioether ligand (Bpto).

(I)

Compound (I) crystallizes with two half-molecules, A and B, in the asymmetric unit (Fig. 1). In each independent molecule, there is a centre of inversion at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. Each molecule, excluding H atoms, is roughly planar, and adopts an all-anti conformation (Goodgame et al., 1999). The $\mathrm{S} 1 \cdots \mathrm{~S} 1 A$ and $\mathrm{S} 2 \cdots \mathrm{~S} 2 B$ distances are 11.703 (2) and 11.749 (4) \AA, respectively. The dihedral angles between the phenyl ring and backbone chain are 20.1 (2) ${ }^{\circ}$ and 20.3 (2) ${ }^{\circ}$ in molecules A and B, respectively. A similarly planar all-anti ligand conformation is found in silver complexes with 1,4-tris(phenylthio)butane (Bu et al., 2002). In Bpto, the average $\mathrm{S}-\mathrm{Csp} p^{2}$ bond distance is 1.754 (2) \AA, considerably shorter than the average $\mathrm{S}-\mathrm{Csp}{ }^{3}$ distance of 1.790 (3) \AA; corresponding bond distances in several phenylthioether compounds (Murray \& Hartley, 1981) are 1.75 and $1.81 \AA$, respectively. The average $\mathrm{C}-\mathrm{S}-\mathrm{C}$ bond angle, $104.9(1)^{\circ}$, is within the normal range for thioethers (Blower \& Dilworth, 1987) and compares well with that observed in an analogous compound (101.6 ; Li et al., 2002).

Experimental

1,8-Bis(phenylthio)octane (Bpto) was prepared according to a reported procedure (Shao et al., 1984), and the product was characterized by NMR, IR and elemental analyses. Colourless single crystals of (I), suitable for X-ray diffraction, were obtained by slow diffusion of acetone into a chloroform solution of Bpto. ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): $1.250(t, 4 \mathrm{H}), 1.382(t, 4 \mathrm{H}), 1.610(m, 4 \mathrm{H})$, $2.845(t, 4 \mathrm{H}), 7.122(m, 10 \mathrm{H})$; FT-IR data (KBr pellet, cm^{-1}): 3440

Received 11 October 2004 Accepted 22 October 2004 Online 30 October 2004
(m), 2921 (s), $2850(s), 1479(s), 1437(s), 731(s), 688(m)$. Analysis calculated for (I) (\%): C 72.73, H 7.88; found: C 72.55, H 7.78.

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~S}_{2}$
$M_{r}=330.53$
Triclinic, $P \overline{1}$
$a=5.579(2) \AA$
$b=7.857(3) \AA$
$c=20.590(7) \AA$
$\alpha=84.044(5)^{\circ}$
$\beta=87.890(6)^{\circ}$
$\gamma=89.572(6)^{\circ}$
$V=897.1(6) \AA^{\circ}$

$Z=2$

$D_{x}=1.224 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 903
reflections
$\theta=3.0-26.3^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.22 \times 0.18 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.936, T_{\text {max }}=0.965$
5201 measured reflections

3612 independent reflections
2506 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-5 \rightarrow 6$
$k=-9 \rightarrow 8$
$l=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.132$
$S=1.04$
3612 reflections
199 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0562 P)^{2} \\
&+0.209 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

S1-C6	$1.753(2)$	$\mathrm{S} 2-\mathrm{C} 16$	$1.756(2)$
S1-C7	$1.787(3)$	$\mathrm{S} 2-\mathrm{C} 17$	$1.793(2)$
$\mathrm{C} 6-\mathrm{S} 1-\mathrm{C} 7$	$105.4(1)$	$\mathrm{C} 16-\mathrm{S} 2-\mathrm{C} 17$	$104.5(1)$

All H atoms were positioned geometrically, with $\mathrm{Csp}{ }^{2}-\mathrm{H}=0.93$ and $\mathrm{Cs} p^{3}-\mathrm{H}=0.97 \AA$; they were constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve

Figure 1
ORTEPII (Johnson, 1976) view of the two independent molecules of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) $2-x, 1-y, 1-z ;(B) 1-x,-y, 1-z$.]
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 20206022).

References

Blower, P. J. \& Dilworth, J. R. (1987). Coord. Chem. Rev. 76, 121-185.
Bruker. (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bu, X.-H., Chen, W., Hou, W.-F., Du, M., Zhang, R.-H. \& Brisse F. (2002). Inorg. Chem. 41, 3477-3482.
Goodgame, D. M. L., Grachvogel, D. A., Hussain, I., White, A. J. P. \& Williams, D. J. (1999). Inorg. Chem. 38, 2057-2063.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Li, J.-R., Yan, Z., Du, M., Xie, Y.-B., Zhang, R.-H. \& Bu X.-H. (2002). Acta Cryst. E58, o243-o244.
Murray, S. G. \& Hartley, F. R. (1981). Chem. Rev. 81, 365-414.
Shao, P.-X., Yao, X.-K. \& Gu, Y.-X.(1984). Acta Chim. Sinica, 42, $20-25$.
Sheldrick. G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

